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Abstract 

This paper present a method for controlling the 

stability and bifurcation of the permanent magnet 

synchronous machine. This approach employs the 

idea used in computing the transition variety sets of 

constrained bifurcations to find the stability 

boundaries of an equilibrium points in parameter 

space. Then, a feedback control method is used to 

control the machine and to detect a different 

bifurcation points. A theory analysis is used to explain 

the evolution of the critical points in the parameter 

space. Thus, the paper deals with the analytical 

representation of bifurcation of the machine.   

Key words: Bifurcation surfaces, boundary stability 

feedback control, pole placement, PMSM. 

I-Introduction  

The investigation of bifurcations in electric motors 

is a field of active research due to its direct 

applications in many areas, such as, industrial 

machinery, electrical locomotives and electrical 

submersibles thruster drives,[7], [13], [14]. The 

appearing of bifurcations phenomena in machine 

drives allows us to study the real stability of 

system. As parameters change, the equilibrium 

point can lose its stability in such a way that a pair 

of complex conjugate eigenvalues of the Jacobien 

matrix of the system crosses the imaginary axis of 

the complex plane, from the left-half plane to the 

right- half plane, such that the machine may start 

oscillating with small amplitude. This phenomena 

of loss of stability is associated with a hopf 

bifurcation where a periodic oscillation emerges 

from a stable equilibrium point EP and another 

small perturbation on the machine parameters 

provokes the onset of growing oscillation. Then, the 

dynamics behavior of permanent magnet 

synchronous motor is studied by means of modern 

nonlinear theories such as bifurcation and chaos, 

[3], [5], [7]. In reality, the dynamic evolution of 

natural systems displays a large variety of 

qualitatively different long-trem behaviors. The 

dynamic of machine can be stationary, periodic, 

quasi periodic and chaotic [2]. Many works is f 

 

 

 

 

 

 

 

 

 

 

 

ocused on analysis of dynamic properties of 

controlled drive of permanent magnet synchronous 

machine and also on bifurcation of steady states and 

possible occurrence of chaotic behavior, [13], [14]. 

Controlling such instabilities is the mean concern of 

many researchs, [6], [8], [11]. These study show 

how to stabilize the system, while having a 

satisfactory performance, even in the case when 

some of the motor parameters were uncertain, [5], 

[2]. The critical phenomena are defined by the 

position of the boundaries of attraction of the 

equilibrium point. The dynamical surface evolution 

of the critical point is corresponding to the case in 

which one of the eigenvalues of the jacobien matrix 

of the linear approximation of the nonlinear system 

cross the imaginay axis of the complex plan, [1], 

[8], [9], [10], [11]. 

The paper is organized as follows: the first section 

concern to explain the mathematical model of the 

machine and a feedback control of the system is 

studied in order to determine the global model of 

the system. In section2, a Pole placement method 

will be detailed where a necessary condition is 

analyzed for the appearing of the stability in first 

step and a different bifurcation points in the second 

step. Another section concern to a numerical 

analysis of the existence of critical point.  

II-Mathematical model of PMSM drive system 

and preliminaries 

1- Mathematical preliminaries 

The dynamic of permanent magnet synchronous 

machine can be modeled by parameter dependent 

differentials equations of the form. 

 ∑: 𝑥 = 𝑓 𝑥, 𝜇         𝑓: ℝ8 → ℝ3  

𝑥 ∈ 𝑋∁ℝ3, 𝜇 ∈ 𝑃∁ℝ5  

For the constrained system ∑, define the set of all 

equilibrium points to be 𝐸𝜇   and let 𝐸𝜇
𝑠 denote the 

set of all stable equilibria defined as 

𝐸𝜇 = { 𝑥𝑒 , 𝜇 ∈ 𝑋 × 𝑃: 𝐹 𝑥𝑒 = 0}  

𝐸𝜇
𝑠 = {(𝑥𝑒 , 𝜇) ∈ 𝐸𝜇 : 𝐴(𝑥𝑒) =

𝜕𝑓𝑖

𝜕𝑥𝑖
, 𝑖 = 1 … 3,  in nonsingular 

and all eigenvalues of 𝐴(𝑥𝑒) have negative real 
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parts}. Note that the jacobien𝐴(𝑥𝑒) =
𝜕𝑓𝑖

𝜕𝑥𝑖
 of the 

fonctuon 𝑓 in the coordinates 𝑥 in nonsingular for 

all (𝑥𝑒 , 𝜇) ∈ 𝐸𝜇
𝑠 and therefore, by the implicit 

function theorem, the equations 𝑓 𝑥𝑒 , 𝜇 = 0 can 

theoretically be solved uniquely for 𝑥𝑒  as functions 

of parameter 𝜇, locally near any equilibrium point 

in 𝐸𝜇
𝑠. Hence 𝐸𝜇

𝑠  is a 𝜇 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 

submanifold embedded  in 𝐸𝜇∁ 𝑋 × 𝑃. 

Now, studding of the dynamical behavior of 

machine need to define a three sets which constitute 

the critical surface boundary (bifurcation) 

correspond to specific conditions on the 

eigenvalues of the system. As a point on 𝐸𝜇  

approaches 𝑆𝑆𝑁  some eigenvalues diverge to 

infinity. The equilibrium has zero eigenvalues in 

the set 𝑆𝑆𝑁  and has a conjugate purely imaginary 

eigenvalues for points in the set 𝑆𝐻 . Moreover, 

generically these bifurcations constitute a dense 

subset of the critical surface boundary for the 

system and its defined by: 

𝑆𝑆𝑁 =   𝑥𝑒 , 𝜇 ∈ 𝐸𝜇 : det 𝐴(𝑥𝑒) = 0}   

𝑆𝐻 =   𝑥𝑒 , 𝜇 ∈ 𝐸𝜇 : det 𝐴(𝑥𝑒) ≠ 0, det⁡(𝑅𝑛−1 𝐴(𝑥𝑒) = 0}   

𝑆𝑆𝑁𝐻 =   𝑥𝑒 , 𝜇 ∈ 𝐸𝜇 : det 𝐴(𝑥𝑒) = det⁡(𝑅𝑛−1 𝐴(𝑥𝑒) = 0, }    

Where 

𝑅𝑛−1 =

 

 
 

𝑎1 𝑎3 𝑎5 ⋯ 𝑎2𝑛−3

0 𝑎2 𝑎4 … 𝑎2𝑛−4

0 𝑎1 𝑎3 … 𝑎2𝑛−5

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑎𝑛−1  

 
 

  

2-Model description of the machine  

The mathematical model of PMSM with the smooth 

air gap can be described as follows: 

∑: 

 
 
 

 
   𝑥 1 = 𝑓1 𝑥, 𝜇 =

−𝑅𝑠

𝐿
𝑥1 + 𝑛𝑝𝑥2𝑥3 +

1

𝐿
𝑣𝑑                                                                     

 𝑥 2 = 𝑓2 𝑥, 𝜇 =
−𝑅𝑠

𝐿
𝑥2 − 𝑛𝑝𝑥1𝑥3 −

𝑛𝑝𝜙𝑓

𝐿
𝑥3 +

1

𝐿
𝑣𝑞    (1)                                         

 𝑥 3 = 𝑓3 𝑥, 𝜇 =
𝑛𝑝𝑚𝜙𝑓

2𝐽
𝑥2 −

𝑓

𝐽
𝑥3 −

1

𝐽
𝑇𝐿                                                                        

                                        

3-State feedback controller of PMSM 

The linearized model of system around an 

equilibrium point 𝑥𝑒  of our machine is described 

by[4] 

𝑥 = 𝐹 𝑥, 𝑢 = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑇𝐿                                                                                                   

With: 𝑥 =  
𝑥1
𝑥2
𝑥3

 =  
𝑖𝑑
𝑖𝑞
𝛺
  is the states variables of the 

system. 𝑢 =  

𝑣𝑑

𝑣𝑞

0
  is the vector of input and 𝐸 =  

0
0
−1

𝐽

  

is a constant vector of the load input  

𝐴 𝑥𝑒   =

 
 
 
 
 

−𝑅𝑠

𝐿
𝑛𝑝𝑥𝑒

3 𝑛𝑝𝑥𝑒
2

−𝑛𝑝𝑥𝑒
3

−𝑅𝑠

𝐿
−𝑛𝑝(𝑥𝑒

1 +
𝜙𝑓

𝐿
)

0
𝑛𝑝 𝑚𝜙𝑓

2𝐽

−𝑓

𝐽  
 
 
 
 

  is the 

jacobien matrix of mathematical model of machine. 

𝐵 =  

1

𝐿
0

0
1

𝐿

0 0

   is the constant matrix of the machine 

input. Now, We wish to stabilize this system about 

some controlled equilibrium state 𝑥𝑒 . Let 𝑢𝑒  be an 

input that achives the desired controlled equilibrium 

state 𝑥𝑒 , that is, 𝐹 𝑥𝑒 , 𝑢𝑒 = 0. The linear static 

state feedback controllers, that is, at each instant t 

of time the current control input u(t) depends 

linearly on the current state x(t).  

The control input can be described by: 

 𝑢 = 𝐾𝑥 + 𝑟  

𝑢 = 𝐾𝑥 + 𝑟 =  
𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

0 0 0

  

𝑥1

𝑥2

𝑥3

 +  
𝑟1

𝑟2

0
                                                                                          

Where K is a constant matrix mxn, sometimes 

called a state feedback gain matrix,[4]. When our 

system is subject to such a controller, its behavior is 

governed by 

𝑥 =  𝐴 + 𝐵𝐾 𝑥 + 𝐵𝑟 + 𝐸𝑇𝐿  

Then, The model of system will be described by the 

following differentials equations: 

 
 
 

 
   𝑥 1 = 𝜇1𝑥1 + 𝑛𝑝𝑥2𝑥3 + 𝜇2𝑥2 + 𝜇3𝑥3 +

𝑣𝑑𝑟𝑒𝑓

𝐿
             

   𝑥 2 = 𝜇1𝑥2 − 𝑛𝑝𝑥1𝑥3 + 𝜇4𝑥1 + 𝜇5𝑥3  +
𝑣𝑞𝑟𝑒𝑓

𝐿
 (2)     

 𝑥 3 = 𝑐1𝑥2 + 𝑐2𝑥3 −
1

𝐽
𝑇𝐿                                               

 

with 

𝜇1 = −
Rs +𝑘11

𝐿
, 𝜇2 =

𝑘12

𝐿
 , 𝜇3 =

𝑘13

𝐿
, 𝜇4 =

𝑘21

𝐿
, 𝜇5 =

−
𝑛𝑝 𝜙𝑓+𝑘23

𝐿
 𝑐1 =

𝑛𝑝𝑚𝜙𝑓

2𝐽
, 𝑐2 = −

𝑓

𝐽
 

The machine operate in permanent regime 

when,[4]: 

𝑥2
𝑒 =

2𝑓

𝑝𝑚 𝜙𝑓
𝑥3

𝑒 +
2

𝑝𝑚 𝜙𝑓
𝑇𝐿  

𝑣𝑑
𝑒 = 𝑅𝑠𝑥1

𝑒 − 𝑝𝐿𝑞𝑥2
𝑒𝑥3

𝑒                                                                                                                    

𝑣𝑞
𝑒 = 𝑅𝑠𝑥2

𝑒 + 𝑝𝐿𝑑𝑥1
𝑒𝑥3

𝑒 + 𝑝𝜙𝑓𝑥3
𝑒   

Now choosing the operation point of machine 𝑥𝑒 =

(𝑥1
𝑒 , 𝑥2

𝑒 , 𝑥3
𝑒) we can compute the input voltage 

 𝑢𝑒 = (𝑣𝑑
𝑒 ,  𝑣𝑞

𝑒) and consequently the reference 

input 𝑟 = (𝑣𝑑𝑟𝑒𝑓 , 𝑣𝑞𝑟𝑒𝑓 ) will be expressed by: 

𝑟 =  𝑢𝑒 − 𝐾 𝑥𝑒     

Now, the objective is to find the constant of matrix 

𝐾 such that the linearized model around the 

operating point 𝑥𝑒  has the following desired 

eignevalues,[12]: 

𝑃 = [−10, −5 + 80𝑖, −5 − 80𝑖]  

Using the matlab function 𝐾 = 𝑝𝑙𝑎𝑐𝑒(𝐴, 𝐵, 𝑃), we 

can determine the value of the matrix K at the 

equilibrium point 𝐸𝑃:  𝑥𝑒 = (11.54, 6.17,43.38) in 

which  the load torque𝑇𝐿 = 5𝑁. 𝑚, and the inputs 

voltage on machine  𝑣𝑑
𝑒 ,  𝑣𝑞

𝑒 =

(5.0154, 47.349). 
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Then, the state feedback matrix will be defined by: 

𝐾 =  
−1.090 1.431 0.203
−1.431 −1.090 −0.016

0 0 0
   

Now, using the elements of the state feedback 

matrix K, we may compute the references inputs 

voltages that it‟s fixed at  𝑣𝑑𝑟𝑒𝑓 , 𝑣𝑞𝑟𝑒𝑓  =

(−0.0414, 71.2821). 

And then the parameters of the machine will have 

the follows values;  

𝜇1 = −208.1818, 𝜇2 = 130.0909 , 𝜇3 =

 18.4545, 𝜇4 = −130.0909, 𝜇5 = −50.5455 

III-Bifurcation surfaces expressions  

The stability of the dynamical machine around an 

equilibrium point will be controlled by the 

eigenvalue of the follows matrix of the machine 

model describing by equations (2): 

𝐴 + 𝐵𝐾 =

 

𝜇1 𝑛𝑝𝑥𝑒
3 + 𝜇2 𝑛𝑝𝑥𝑒

2 + 𝜇3

−𝑛𝑝𝑥𝑒
3 + 𝜇4 𝜇1 −𝑛𝑝𝑥𝑒

1 + 𝜇5

0 𝑐1 𝑐2

          

Taking the equilibrium point at the origin of 

machine 𝑥𝑒 = (0,0,0), the jacobien matrice will be 

expressed by 

𝐴 + 𝐵𝐾 =  

𝜇1 𝜇2 𝜇3

𝜇4 𝜇1 𝜇5

0 𝑐1 𝑐2

   

So, when the eigenvalues of 𝐴𝑐𝑙 = (𝐴 + 𝐵𝐾) have 

a negative real parts, the closed loop of nonlinear 

system is asymptotically stable about 𝑥𝑒 . 

The characteristic polynome of the system is 

defined by 

𝑃 𝜆 = 𝑑𝑒𝑡 𝜆𝐼 − 𝐴 − 𝐵𝐾   

The characteristic polynome of the jacobien matrix 

is defined by: 

𝑃 𝜆 = 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3                                                                                                        

Which: 

𝑎1 = −𝑡𝑟 𝐴𝑐𝑙 = −  
𝜕𝑓1

𝜕𝑥1
+

𝑘11

𝐿
 −  

𝜕𝑓2

𝜕𝑥2
+

𝑘22

𝐿
 −

𝜕𝑓3

𝜕𝑥3
= −2𝜇1 − 𝑐2  

𝑎2 =  
𝜇1 𝜇2

𝜇4 𝜇1
 +  

𝜇1 𝜇3

0 𝑐2
 +  

𝜇1 𝜇5

𝑐1 𝑐2
   

= 𝜇1
2 − 𝜇2𝜇4 + 2𝑐2𝜇1 − 𝑐1𝜇5  

𝑎3 = det 𝐴𝑐𝑙 = −  

𝜇1 𝜇2 𝜇3

𝜇4 𝜇1 𝜇5

0 𝑐1 𝑐2

 = 𝜇4 𝑐2𝜇2 −

𝑐1𝜇3 − 𝜇1 𝑐2𝜇1 − 𝑐1𝜇5                                                        

 

1-Boundary stability of equilibrium point 

Using the Routh-Hurwitz matrix 𝑅𝑛−1, we can 

explain the necessary and the sufficient conditions 

of stability and then all the roots of the polynomial 

have negative real parts, that given by: 

∆𝑖 𝜇 > 0, 𝑖 = 1 … 3  

Where ∆𝑖 𝜇  are called principal minors of the 

Hurwitz arrangement of order 𝑛 

The first condition of stability is that all the 

coefficients of the characteristic polynomial are 

positive 𝑎𝑖 > 0. 

𝑎1 = −(2𝜇1 + 𝑐2) > 0  

𝑎2 = 𝜇1
2 − 𝜇2𝜇4 + 2𝑐2𝜇1 − 𝑐1𝜇5 > 0  

𝑎3 = 𝜇4 𝑐2𝜇2 − 𝑐1𝜇3 − 𝜇1 𝑐2𝜇1 − 𝑐1𝜇5 > 0  

The second condition of stability need to calculate 

the minors of the Hurwitz arrangement. 

∆1 𝜇 =  𝑎1 = −(2𝜇1 + 𝑐2) > 0  

∆2 𝜇 =  
𝑎1 1
𝑎3 𝑎2

 = 𝑎1𝑎2 − 𝑎3 > 0  

∆3 𝜇 =  
𝑎1 1 0
𝑎3 𝑎2 𝑎1

0 0 𝑎3

 =  𝑎1𝑎2 − 𝑎3 𝑎3 =

𝑎3∆2 𝜇 > 0  

In order to study the dynamical behavior of system, 

we need to explain the boundaries of the domain of 

attraction of the stability of system. Then, a critical 

bifurcation surface expression will be detailed, [10]. 

Thus the domain of attraction of the equilibrium 

point 𝑥𝑒 = (𝑥1
𝑒 , 𝑥2

𝑒 , 𝑥3
𝑒) is defined by the three 

inequalities 

∆1 𝜇 = −(2𝜇1 + 𝑐2) > 0  

∆2 𝜇 = 𝑎1𝑎2 − 𝑎3 > 0  

∆3 𝜇 =  𝑎1𝑎2 − 𝑎3 𝑎3 = 𝑎3∆2 𝜇 > 0  

Thus a necessary condition of the parameter 𝜇 will 

be defined by  

𝜇1 <
−𝑐2

2
=  0.0083  

𝜇4 >
2𝜇1

3+4𝑐2𝜇1
2− 𝑐1𝜇5−2𝑐2

2 𝜇1−𝑐1𝑐2𝜇5

𝑐1𝜇3+2𝜇2𝜇1
= 𝑙𝐻(𝜇)  

𝜇4 >
𝜇1(𝑐2𝜇1−𝑐1𝜇5)

𝑐2𝜇2−𝑐1𝜇3
= 𝑙𝑆𝑁(𝜇)  

Note that 𝑙𝐻(𝜇) is defined for 2𝜇1𝜇2 + 𝑐1𝜇3 ≠ 0. 

Then the critical values of parameter 𝜇2 are defined 

by 𝜇2𝑐 =
−𝑐1𝜇3

2𝜇1
. 

Thus, the parametric function 𝑙𝑆𝑁(𝜇) has a critical 

point at  𝜇2𝑐 =
𝑐1𝜇3

𝑐2
, and the boundaries of the 

domain of attraction are defined by the two planes 

𝓅1 ≡  𝜇 ∈ ℛ5 𝜇1 = 𝜇1𝑐 =
−𝑐2

2
    

𝓅2 ≡  𝜇 ∈ ℛ5 ∆2 𝜇 = 𝑎1𝑎2 − 𝑎3 = 0    

And the saddle plan which expressed by the follow 

equation 

𝓅3 ≡

 𝜇 ∈ ℛ5 ∆3 𝜇 =  𝑎1𝑎2 − 𝑎3 𝑎3 = 𝑎3∆2 𝜇 = 0    

Then, the three planes𝓅1 , 𝓅2, 𝓅3  define the 

boundaries of the domain of attraction and they are 

called the critical bifurcation surfaces which we 

will detailed in the next section 
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2- Hopf bifurcation surface: 

Taking the follow case, in which a Hopf bifurcation 

point is appeared when the eigenvalues take the 

follow form,[24]: 

𝜆1,2 = ±𝑗𝜎0            

𝜆3 = 𝛽1    

Thus, the desired characterisitc equation is defined 

by 

𝑝ℎ 𝜆 = 𝜆3 − 𝛽1𝜆2 + 𝜎0
2𝜆 − 𝛽1𝜎0

2  

Then, 𝑝 𝜆 = 𝑝ℎ 𝜆   when the coeficients of the 

two characteristic polynomials are equal and then 

the real and imaginary parts of eigenvalues will be 

expressed by. 

𝛽1 = −𝑎1 = 2𝜇1 + 𝑐2                                   

𝜎0
2 = 𝑎2 = 𝜇1

2 − 𝜇2𝜇4 + 2𝑐2𝜇1 − 𝑐1𝜇5        

𝑎3 = −𝛽1𝜎0
2                                                 (3) 

Now, replacing respectively  𝛽1 and 𝜎0
2in the 

expression (3) by −𝑎1 and 𝑎2 , The conditions for 

the appearing of the hopf bifurcation are defined by 

∆2 𝜇 = 𝑎1𝑎2 − 𝑎3 = 0, in which we may 

determine 𝜇4 = 𝑙𝐻(𝜇1, 𝜇5) And then the expression 

of the imaginary parts of the eigenvalues 𝜆1 and 𝜆2 

will be expressed by 

𝜎0(𝜇)2 = 𝑎2 = 𝜇1
2 − 𝑙𝐻 𝜇 + 2𝑐2𝜇1 − 𝑐1𝜇5   

thus 

𝜎0 𝜇 =  
𝑐1𝜇3𝜇1

2− 𝛾1+𝑐1𝜇5𝜇2 𝜇1+𝛾2𝜇5

𝑐1𝜇3+2𝜇2𝜇1
=  

𝑝(𝜇)

𝑞(𝜇)
  

with 

𝛾1 = 2𝑐2
2𝜇2 − 2𝑐2𝑐1𝜇3  

𝛾2 = 𝑐1𝑐2𝜇2 − 𝑐1
2𝜇3  

𝜆1,2 are purely imaginaire if the follows 

conditions are satisfied. 

𝑞 𝜇 > 0 when 𝜇1 >
−𝑐1𝜇3

2𝜇2
 with 𝜇2 ≠ 0 

And 𝑝 𝜇 > 0. Now, equating 𝑝 𝜇  , then it‟s 

discriment is ∆= 𝜇5
2 + 𝛼1𝜇5 + 𝛼2. With 𝛼1 =

2𝛾1𝜇2−4𝛾2𝜇3

𝜇2
2  and 𝛼2 =

𝛾1
2

(𝑐1𝜇2)2 

Now, look that ∆ as a function depend of 𝜇5, 

then we will search the roots of ∆; 

∆′= 𝛼1
2 − 4𝛼2 = 0 if 𝛼1

2 = 4𝛼2 

And then 

𝜇5𝑐(𝜇2, 𝜇3) =
−𝛼1

2
=

2𝛾2𝜇3−𝛾1𝜇2

𝜇2
2  .Thus, taking 

∆= 0,  𝜇1𝑐(𝜇2, 𝜇3) =
𝛾1+𝑐1𝜇5𝑐𝜇2

2
  and for 

𝜇1 < 𝜇1𝑐  

𝜎0(𝜇) ≠ 0  

Then, the eigenvalues 𝜆1,2 is purely imaginary and 

consequently a hopf bifurcation point is occuring. 

3-Bagdanov-Takens bifrucation 

Taking the case in which 𝜎0 𝜇 = 0,  the two 

eigenvalues 𝜆1,2 are equal to zero, then this is a 

condition for the appearing of the bifurcation of 

codimension 2 that it‟s called a Bagdanov-Takens 

bifurcation BTand it will be designed by 

𝑆𝐵𝑇1 = { 𝜇, 𝑥 → 𝜎0(𝜇) = 0|𝜇1 =
𝛾1+𝑐1𝜇5𝑐𝜇2

2
}  

Another case in which a Bagdanov-Takens 

bifurcation is detected when 

𝑆𝐵𝑇2 = { 𝜇, 𝑥 → 𝜎0(𝜇) = 0|𝜇1 =
𝛾1+𝑐1𝜇2𝜇5𝑐± ∆

2
: ∆> 0}  

4-Neutrale saddle bifurcation 

This type of bifurcation occur the two eigenvalues 

𝜆1,2 are real and satisfied the follow condition 

𝜆1 + 𝜆2 = 0  

 The first condion in which 𝜆1,2 are real is verified 

if 
𝑝(𝜇)

𝑞(𝜇 )
< 0 when 𝑝 𝜇 < 0 

Look that to satisfy this conditon we need to vary  

one of the fourth parameter (𝜇2, 𝜇3) in which the 

roots of 𝑝 𝜇  and ∆ as a function of 𝜇2, 𝜇3. 

𝜇5𝑐(𝜇2, 𝜇3) =
2𝛾2𝜇3−𝛾1𝜇2

𝜇2
2    

𝜇1𝑐(𝜇2, 𝜇3) =
𝛾1+𝑐1𝜇5𝑐𝜇2

2
                                                                                                                              

The surface 𝑆𝐻  play an important role in the 

formation of the chaotic region. The chaotic 

attractor is formed from a pair of limit cycles which 

emerge from the nontrivial steady state in the hopf 

bifurcation and undergo a homoclinic bifurcation 

with the trivial steady state.  

 
Figure1: Dynamics of eigenvalues in the parameter 

plane 𝜇1 − 𝜇5 

Figure 1 explain the oscillatory dynamic of the 

PMSM drive near a hopf bifurcation surface in 

which the eigenvalues 𝜆1 and 𝜆2 are purely 

imaginary. Using the figure 2, one may verify the 

oscillatory dynamic of machine in phase plane and 

for 𝜇3 = 0.024888888. Decreasing 𝜇3 to 0.0243, 

dynamic behavior of PMSM will be chaotic   
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𝜇3 = 0.024888888 

 

𝜇3 = 0.0243 

Figure 2: dynamic behavior of PMSM in phase plan 

5-Saddle-node surface: 

Now, for the saddle node bifurcation, taking the 

follow situation of the eigenvalues 

𝜆1,2 = 𝛽2 ± 𝑗𝜎0           

𝜆3 =  0  

And using the conditions for the appearing of this 

critical point, then 

𝑎3 = 𝜇4 𝑐2𝜇2 − 𝑐1𝜇3 − 𝜇1 𝑐2𝜇1 − 𝑐1𝜇5 = 0  

thus 

𝜇4 = 𝑙𝑆𝑁(𝜇1, 𝜇5) =
𝜇1 𝑐2𝜇1−𝑐1𝜇5 

 𝑐2𝜇2−𝑐1𝜇3 
  

And Then, the real and the imaginary parts of the 

eigenvalue will be expressed by  

𝛽2 =
−𝑎1

2
, 𝜎0 =  

4𝑎2−𝑎1
2

4
   

Now,look that  𝛽2 < 0 , when 𝜇1 <
−𝑐2

2
= 0.0083. 

For another hand, the eigenvalues  𝜆1,2 are real if 

4𝑎2 − 𝑎1
2 < 0 . in which 

𝜇4 > 𝑙3 𝜇1, 𝜇5 =
4 𝑐2𝜇1−𝑐1𝜇5 −𝑐2

2

4𝜇2
  

So the evolution of the eigenvalues are described by 

the surfaces 

𝑆𝜆1,2

(1) =  𝜇 = (𝜇1 , 𝜇3)  𝜆1,2 =
2𝜇1+𝑐2± 4𝑎2−𝑎1

2

2
∶ 4𝑎2 − 𝑎1

2 <

0}  

𝑆𝜆1,2

(2) =  𝜇 = (𝜇1 , 𝜇3)  𝜆1,2 =
2𝜇1+𝑐2±𝑗 4𝑎2−𝑎1

2

2
∶ 4𝑎2 − 𝑎1

2 >

0}  

Then, the saddle node bifurcation are caracterized 

by the follow surface 

𝑆𝑆𝑁 ≡

 𝜇 = (𝜇1, 𝜇3) ∆3 𝜇 =  𝑎1𝑎2 − 𝑎3 𝑎3 = 𝑎3∆2 𝜇 = 0 ∶
−𝑎1

2
≠ 0   

This equality defines the structure of bifurcations 

on the saddle in the following way. On the saddle 

all three of each eigenvalue are not more than zero, 

since a saddle is the boundary of the domain of 

asymptotic stability and, moreover, on the saddle 

we have one real eigenvalue and two complex 

conjugate eigenvalues. 

 
Figure3: Evolution of eigenvalues in the parameter 

space  𝜇1 − 𝜇3 

 
𝜇5 = 0.0008 
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𝜇5 = 0.00111    

Figure4: multi stability of PMSM in phase plan                                             

  Figure3 explain the evolution of the surface of the 

real and imaginary eigenvalues  in the parameter 

plan. Then all point in the surface may verify the 

two conditions 𝐹 𝑥𝑒 = 0, thus the real eigenvalues  

cross a zero for 𝜇1 = 𝜇3 = 0. Now, if a small 

perturbation of the parameter 𝜇5, the dynamic of the 

PMSM drive will be changed its structure, see 

figure4. And then, the multi stability machine will 

be defined by to equilibrium point 𝐸𝑃0 and  𝐸𝑃1 for 

𝜇5 = 0.00111.  

IV-Conclusion 

The paper presents a through bifurcation analysis of 

detailed permanent magnet machine with feedback 

drive, showing the effect of different control 

parameters and on the bifurcation and associated 

stability of the system. This paper concentrates on 

showing the practical applications of the bifurcation 

theory in order to investigate the real stability of 

machine 
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